Normal view MARC view ISBD view

Mathematical foundations of imaging, tomography and wavefield inversion /

by Devaney, Anthony J.
Material type: materialTypeLabelBookDescription: xvii, 518 pages : illustrations ; 26 cm.ISBN: 9780521119740 (hardback).Subject(s): Wave equation | Inverse problems (Differential equations) | SCIENCE / OpticsOnline resources: Cover image
Contents:
Machine generated contents note: 1. Radiation and initial value problems for the wave equation; 2. Radiation and boundary-value problems in the frequency domain; 3. Eigenfunction expansions of solutions to the Helmholtz equation; 4. Angular-spectrum and multipole expansions; 5. The inverse source problem; 6. Scattering theory; 7. Surface scattering and diffraction; 8. Classical inverse scattering and diffraction tomography; 9. Waves in inhomogeneous media; 10. Time-reversal imaging for systems of discrete scatterers; 11. The electromagnetic field.
Summary: "Inverse problems are of interest and importance across many branches of physics, mathematics, engineering and medical imaging. In this text, the foundations of imaging and wavefield inversion are presented in a clear and systematic way. The necessary theory is gradually developed throughout the book, progressing from simple wave equation based models to vector wave models. By combining theory with numerous MATLAB based examples, the author promotes a complete understanding of the material and establishes a basis for real world applications. Key topics of discussion include the derivation of solutions to the inhomogeneous and homogeneous Helmholtz equations using Green function techniques; the propagation and scattering of waves in homogeneous and inhomogeneous backgrounds; and the concept of field time reversal. Bridging the gap between mathematics and physics, this multidisciplinary book will appeal to graduate students and researchers alike. Additional resources including MATLAB codes and solutions are available online at www.cambridge.org/9780521119740"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Location Call number Status Date due
Books Books
Epoka University Library
QC 174.26 .W28 D382 2012 (Browse shelf) Available
Browsing Epoka University Library Shelves Close shelf browser
No cover image available
QC 23.2 .S47 2006 Physics for scientists and engineers. QC 73 .D383 1988 The cosmic blueprint : QC 157 .O78 1999 Modulated waves : QC 174.26 .W28 D382 2012 Mathematical foundations of imaging, tomography and wavefield inversion / QC 530 .D44 2004 Studying Physics / QC 881.2 .O9 .C48 2001 Ozone layer : QC 929 .S7 .M44 1997 Snow in America /

Machine generated contents note: 1. Radiation and initial value problems for the wave equation; 2. Radiation and boundary-value problems in the frequency domain; 3. Eigenfunction expansions of solutions to the Helmholtz equation; 4. Angular-spectrum and multipole expansions; 5. The inverse source problem; 6. Scattering theory; 7. Surface scattering and diffraction; 8. Classical inverse scattering and diffraction tomography; 9. Waves in inhomogeneous media; 10. Time-reversal imaging for systems of discrete scatterers; 11. The electromagnetic field.

"Inverse problems are of interest and importance across many branches of physics, mathematics, engineering and medical imaging. In this text, the foundations of imaging and wavefield inversion are presented in a clear and systematic way. The necessary theory is gradually developed throughout the book, progressing from simple wave equation based models to vector wave models. By combining theory with numerous MATLAB based examples, the author promotes a complete understanding of the material and establishes a basis for real world applications. Key topics of discussion include the derivation of solutions to the inhomogeneous and homogeneous Helmholtz equations using Green function techniques; the propagation and scattering of waves in homogeneous and inhomogeneous backgrounds; and the concept of field time reversal. Bridging the gap between mathematics and physics, this multidisciplinary book will appeal to graduate students and researchers alike. Additional resources including MATLAB codes and solutions are available online at www.cambridge.org/9780521119740"-- Provided by publisher.

There are no comments for this item.

Log in to your account to post a comment.

Epoka University Library, Rr. Tiranë-Rinas,Km. 12 1039 Tirana, Albania
+355 4 2232 086| FAX +355 4 2222 117|library@epoka.edu.al